
Hanyang Univ.

B-Tree



Hanyang Univ.

Binary Trees are not quite appropriate for data stored on disks

– disk access is MUCH slower than memory access

– disk is partitioned into blocks (pages) and the access time of a 
word is the same as that of the entire block containing the 
word.

We have to reduce the number of disk accesses
Þ Make each node of the tree wider (multi-way search tree)

k

x < k       x > k

k1       k2       k3

x < k1 k1<x<k2 k2<x<k3 k3 < x

p0 p1 p2
p3

B-Trees

2



Hanyang Univ.

A B-Tree of order m (³ 3) has the following properties

The root is either a leaf or has between 2 and m children

– Each non-leaf node except the root has between 
!
"

and m
(non-null) children.  A node with k children contains k –1 key 
values.

– All leaves are at the same level and each leaf contains between 

( !
"
− 1) to (m – 1) keys.

B-Trees (Rudolf Bayer 1972)

3



Hanyang Univ.

2-3 Tree

18 : –

13 : – 30 : 45

8 : 11 16 : – 22 : 23 41 : – 58 : 59

An Example B-Tree with m = 3

4



Hanyang Univ.

A B-Tree of height h

• Best case: the tree is splitting widely (has mh leaves)

ℎ ≤ log! 𝑛 =
log 𝑛
log𝑚

= 𝑂(log 𝑛)

• Worst case: the tree is splitting !
"

ways

ℎ ≤ log !
"
𝑛 =

log 𝑛

log 𝑚
2

= 𝑂(log 𝑛)

(Example) If m = 256, we can store 1M records with a height of 3

Height of a B-Tree

5



Hanyang Univ.

#define order 32

struct B_node {
int n_child;                /* number of children */
B_node *child[order];   /* children pointers  */
int key[order-1];          /* keys               */

}

Node Structure

6



Hanyang Univ.

When we arrive at an internal node with key k1 < k2 ,... < km-1, search 
for x in this list (either linearly or by binary search)

• if you found x, you are done

• otherwise, find the index i such that ki < x < ki+1 (k0 = –¥ and km = 
¥), and recursively search the subtree pointed by pi.

Complexity = log m · logmn = O(log n)

Search

7



Hanyang Univ.

Do a search to find the appropriate leaf into which to insert the 
node

• if the leaf is not full (has < m – 1 keys), simply insert it

• if the node overflows, restore the balance

(1) Key-Rotation: Check for Siblings for rotation

Key-Rotation is convenient but neither sufficient nor necessary

15 : 42

9 : -- 18 : 22 : 30

18 : 42

9 : 15 22 : 30

T1 T1

Insertion

8



Hanyang Univ.

15 : 42

9 : -- 18 : 22 : 30

18 : 42

9 : 15 22 : 30

T1 T1– : 9 9 : 15

15 : 18

18 : 22

42: –

30 : 42

22 : 30

9

Insertion

Do a search to find the appropriate leaf into which to insert the 
node

• if the leaf is not full (has < m – 1 keys), simply insert it

• if the node overflows, restore the balance

(1) Key-Rotation: Check for Siblings for rotation

Key-Rotation is convenient but neither sufficient nor necessary



Hanyang Univ.

(2) Node Split: If we have a node with m keys after insertion
k1 < k2 ,... < km, we split the node into three groups:

• (a) one with smallest  
!12
"

elements,

• (b) a single central element,

• (c) one with the largest 
!12
"

keys

Make (a) and (c) as new nodes and insert (b) to the parent

•
!12
"

≥ !12
"

≥ !
"
− 1

• if the parent overflows, repeat the process (1) or (2)

• if the root overflows, create a new root with 2 children (this is 
the only way that the B-tree gains height, and the root is allowed 
to have two children due to this)

10

Insertion



Hanyang Univ.

8 : 19

3 : – 12 : 16

1 : – 5 : – 9 : – 14 : – 17 : –

27 : 40

20 : 24 30 : 35 51 : 55

8 : 19

3 : – 12 : 16

1 : – 5 : – 9 : – 14 : – 17 : –

27 : 35 : 40

20 : 24 30 : 36 : 51 : 55

overflow!

overflow!

3 : – 12 : 16

1 : – 5 : – 9 : – 14 : – 17 : – 20 : 24 30 : 36 : 51 : 55

27 : 40 :

8 : 19 : 35

3 : – 12 : 16

1 : – 5 : – 9 : – 14 : – 17 : – 20 : 24 30 : 36 : 51 : 55

27 : 40 :

8 : – 35 : –

19 : –

insert(36)

11



Hanyang Univ.

We still need to find a suitable replacement which is the largest 
key in the left child (or the smallest in the right) and move it to fill 
the hole.  The replacement is always at the leaf level and creates a 
hole in a leaf node.

• if the leaf still has sufficient capacity, we are done.

• otherwise, node merging is performed.

12

Deletion



Hanyang Univ.

• We cannot just merge the underflowed node with a sibling node 
since the sibling might be already full Þ key-rotation

• If there is no sibling that we can rotate from, we merge the 

underflowed node ( !
"
− 2 keys) with a sibling ( !

"
− 1 keys),                                   

creating a new node with £ m – 2 nodes.

• We also move down the intermediate node from the parent and 
include it in the new node.

• This might cause underflow in the parent node and we repeat.

13

Merging



Hanyang Univ.

8 : 19

3 : – 12 : 16

1 : – 5 : – 9 : – 14 : – 17 : –

27 : 40

20 : 24 30 : 35 51 : 55

8 : 19

3 : – 12 : 16

1 : – 9 : – 14 : – 17 : –

27 : 40

20 : 24 30 : 35 51 : 55

8 : 19

12 : 16

1 : 3 9 : – 14 : – 17 : –

27 : 40

20 : 24 30 : 35 51 : 55

12 : 19

8 : 16 :

1 : 3 14 : – 17 : –

27 : 40

20 : 24 30 : 35 51 : 559 : –

underflow! Node Merge

Key Rotation

delete(5)

14



Hanyang Univ.

• All records are allowed to be stored only in the leaves.

• All non-leaf nodes include only the key values which can be 
found in the subtrees of the node.

• Leaf nodes can have a pointer to its next sibling so that a 
sequential access is possible.

25 30 50 55 60 65 75 80 85 905 10 15 20

25 50 75

Difference from Weiss textbook (B+ Tree)

15



Hanyang Univ.

Database systems 

• Number of disk accesses is 𝑂(log! 𝑛)

• Each disk access requires 𝑂(log𝑚) overhead to determine the 
direction to branch, but this is done in main memory without a 
hard disk access, thus negligible.  

• m has better be determined as large as possible, but it must still 
be small enough so that an internal node can fit into one disk 
block.  

• m is typically between 32 and 256.

• Oftentimes one or two levels of internal nodes reside in main 
memory.

Practical Use of B-Tree

16


