
D i s c r e t e M a t h e m a t i c s : L o g i c
D a t a S t r u c t u r e :

Tr e e

tree

 a collection of nodes connected by edges without a cycle

 by recursive definition:

- an empty tree or

- a root r and subtrees T1, T2,..., Tk (disjoint sets) each of whose roots
are connected to r by an edge

T1 T2 Tk

r

recursive definition of tree

tree

 Each root of T1, T2,..., Tk is a child of r, and r is the parent of each root.

 The roots of the subtrees are siblings of one another

 If there is an order among the Ti’s, the tree is an ordered tree.

 The degree of a node is the number of children it has.

 The degree of a tree is the maximum degree of the nodes.

 A leaf is a node of degree 0.

H I

E F

B D

G

A

C

an example of tree

T1 T2 Tk

r

tree

 path between two nodes is a sequence of nodes n1, n2,... nk, such that ni
is a parent of ni+1

 length of a path is the number of edges on the path (the path n1, n2,...
nk: length k-1)

 depth (level) of a node is the length of the (unique) path from the root
to that node (root: level 0)

 height of a node is the length of the longest path from that node to a
leaf (leaf: height 0)

 the height of a tree is the height of the root

H I

E F

B D

G

A

C

representat ion of tree

 for any node x, there exists exactly one path from the root to x?

 tree can be empty with no node?

 how many edges are in a tree with n nodes?

representat ion of tree

 how can we implement a tree?

 linked list?

 can we have pointers for the children nodes?

 can we have fixed number of pointers to represent a tree?

 for a tree of fixed number of degree?

 else?

a

b c d

e f g

h i

a

b c d

e f g

h i

left child-right sibling representation

 every node has at most one leftmost child and at most one closet right sibling

a

b c d

e f g

h i

a

b c d

e f g

h i

c

First child

Next Sibling Definition:

left child-right sibling representation

 every node has at most one leftmost child and at most one closet right sibling

a

b c d

e f g

h i

c

First child

Next Sibling Definition:

struct TreeNode{

ElementType Element;

PtrToNode FirstChild;

PtrToNode NextSibling;

};

typedef struct TreeNode *PtrToNode;

left child- right sibling representation

binar y tree

a finite set of nodes that is either
i) empty or
ii) a root node and two disjoint binary trees

the tree on the left and the tree on the right are different

binar y tree

the maximum number of nodes on level i of a binary tree is 2i, i>=0

the proof by induction
base: for the root at level i=0, 20 = 1
induction hypothesis: assume that the maximum number of nodes
on level i-1 > 0, 2i-1

induction step: on level i,
2 * (the maximum number of nodes on level i-1) = 2 * 2i-1 = 2i

the maximum number of nodes in a binary tree of depth k is 2k+1-1, k>=0

binar y tree

For any nonempty binary tree T, if n0 is the number of leaf nodes,
and n2 is the number of nodes of degree 2, then n0 = n2 + 1

n = n0 + n1 + n2 , ni is the number of nodes with i degree
 n is the number of nodes in the tree

n = B + 1 = n1 + 2n2 + 1, B is the number of branches (edge)

binar y tree

full binary tree is a binary tree in which every node has 0 or 2 children
complete binary tree is a binary tree in which every level, except the last, is
completely filled and the last level has all its nodes to the left side

binar y tree

the max number of nodes in the complete binary tree (height h) is 2 h+1 -1

20 + 21 + … + 2h = (2h+1 - 1)/ (2 -1) = 2h+1 - 1

h = 3

perfect binary tree of height h is a binary tree of height h having 2h+1 - 1 nodes, (h >=0)

binar y tree: array representat ion

binar y tree: array representat ion

if a complete binary tree with n nodes (i is the index) is represented sequentially,
leftChild(i) is at 2i for 2i <=n
rightChild(i) is at 2i + 1 for 2i + 1 <= n
parent(i) is at ⎿i/2⏌ for i >1

binar y tree: array representat ion

if a complete binary tree with n nodes (i is the index) is represented sequentially,
leftChild(i) is at 2i for 2i <=n
rightChild(i) is at 2i + 1 for 2i + 1 <= n
parent(i) is at ⎿i/2⏌ for i >1

binar y tree: l inked l i s t representat ion

struct TreeNode
{

 ElementType Element;
 Tree Left;
 Tree Right;

};

typedef struct TreeNode* PtrToNode;
typedef struct PtrToNode Tree;

 a tree in which each node has no more than 2 children
 (left subtree and right subtree)

r

TL TR

ElementLeft Right

binar y tree: l inked l i s t representat ion

appl icat ion of b inar y tree

 Expression Tree: intermediate representation for expressions used by the
compiler

tree traversa l

void inorder(Tree ptr) {
if(ptr) {

inorder(ptr->left_child);
printf(“%d”, ptr->data);
inorder(ptr->right_child);

}
}

 inorder traversal

tree traversa l

void preorder(Tree ptr) {
if(ptr) {

printf(“%d”, ptr->data);
preorder(ptr->left_child);
preorder(ptr->right_child);

}
}

void postorder(Tree ptr) {
if(ptr) {

postorder(ptr->left_child);
postorder(ptr->right_child);
printf(“%d”, ptr->data);

}
}

tree traversa l

void iterInorder (Tree node) {

int top = -1
Tree stack[MAX_SIZE];
for (; ;) {

for (; node; node = node -> leftChild)
push(node);

node = pop(); // pop parent
if (!node) break;
printf(“%d”, node -> data);
node = node -> rightChild;

}
}

 iterative in-order traversal using stack

tree traversa l

 level-order traversal

tree traversa l

void levelOrder (Tree ptr) {
int front = 0;
int rear = -1;
Tree queue[MAX];
if (!ptr) return;
addq(ptr);
for (; ;) {

ptr = deleteq();
if (ptr) {

printf(“%d”, ptr->data);
if (ptr -> leftChild)

addq(ptr -> leftChild);
if (ptr -> rightChild)

addq(ptr -> rightChild);
}
else break;

}
}

 level-order traversal

threaded b inar y trees

 there are n+1 null links out of 2n total links

 replace the null links by pointers, called threads to other nodes in the tree

 if ptr -> leftChild is null, replace the null with a pointer to the node
that would be visited before ptr in an in-order traversal

 if ptr -> rightChild is null, replace the null with a pointer to the node
that would be visited after ptr in an in-order traversal

threaded b inar y trees

 How to distinguish actual pointers and threads?

→add two additional fields to the node structure

 if ptr->left_thread = true, ptr->left_child contains thread

 if ptr->left_thread = false, ptr->left_child contains a pointer to
the left child

threaded b inar y trees

threaded b inar y trees

in-order traversa l of threaded b inar y trees

 find the in-order successor of ptr without using stack

 if ptr -> right_thread = TRUE, ptr -> right_child

 otherwise follow a path of left_child links from the right_child of ptr
until we reach a node with left_thread = TRUE

in-order traversa l of threaded b inar y trees

 find the in-order successor of ptr without using stack

 if ptr -> right_thread = TRUE, ptr -> right_child

 otherwise follow a path of left_child links from the right_child of ptr
until we reach a node with left_thread = TRUE

Which node will be returned if blue node is passed into the function insucc?

in-order traversa l of threaded b inar y trees

 find the in-order successor of ptr without using stack

 if ptr -> right_thread = TRUE, ptr -> right_child

 otherwise follow a path of left_child links from the right_child of ptr
until we reach a node with left_thread = TRUE

Which node will be returned if root node is passed into the function insucc?

in-order traversa l of threaded b inar y trees

