
Hanyang Univ.
1

Divide-and-Conquer

Slides from Heejin Park

Divide-and-Conquer

Hanyang Univ.2

2

Asymptotic notation review

• Θ(n) = 3n – 1

• O(n) = 3n – 1
• O(n2) = 3n – 1

• o(n2) = 3n – 1
• o(n) ≠ 3n – 1

• Ω(n) = 3n – 1
• Ω(n) = 3n2 – 1

• ω(n) ≠ 3n – 1
• ω(n) = 3n2 – 1

Hanyang Univ.3

3

• When an algorithm contains a recursive call to itself, its
running time can often be described by a recurrence.

• A recurrence is an equation or inequality that describes a
function in terms of its value on smaller inputs.

Recurrences

if n=1,

if n>1.

Hanyang Univ.4

• Solving recurrences

– Obtaining asymptotic “Θ”, “O” bounds on the solution.

• Three methods for solving recurrences
– Substitution method
– Recursion-tree method
– Master method

4

Recurrences

Hanyang Univ.5

5

The substitution method

• The substitution method consists of two steps
1. Guess the solution.
2. Use mathematical induction to prove the guess is right.

Hanyang Univ.6

6

The substitution method

• Determining an upper bound on the recurrence

• Guess :

• Prove :

(for an appropriate choice of the constant c > 0)

Hanyang Univ.7

7

The substitution method

• Mathematical induction
– Basis or boundary conditions
– Inductive step

Hanyang Univ.8

8

The substitution method

• Inductive step

– Assume that this bound holds for ⌊n/2⌋, that is,
 T (⌊n/2⌋) ≤ c ⌊n/2⌋ lg(⌊n/2⌋).

 T(n) = 2T(⌊n/2⌋) + n
 ≤ 2(c ⌊n/2⌋lg(⌊n/2⌋)) + n

 ≤ cn lg(n/2) + n
 = cn lg n - cn lg 2 + n
 = cn lg n - cn + n
 ≤ cn lg n

 (as long as c ≥ 1)

Hanyang Univ.9

9

The substitution method

• Boundary conditions

– T(n) ≤ cn lg n for n = 1 (?)
– It is impossible because T(1) = 1 but c1 lg1 = 0.

Hanyang Univ.10

10

The substitution method

• Note that we don’t have to prove T(n) = cn lg n for all n.

– We only have to prove T (n) = cn lg n for n ≥ n0, for some n0.
– Thus, let n0 = 2.
– T(2) = 2T(1) + 2 = 4
– T (2) = 4 ≤ c2 lg 2
– c ≥ 2 satisfies the inequality.

Hanyang Univ.11

11

The substitution method

• Observe T(3) depends directly on T(1).

– T(3) = 2T(1) + 3
– T (3) = 5.
– To show T (3) = 5 ≤ c3 lg 3.
– Any choice of c ≥ 2 satisfies the inequality.

Hanyang Univ.12

12

The recursion-tree method

• How to guess a good solution?

• We can guess the solution using the recursion-tree
method.
– Later, the solution is proved by the substitution method.

Hanyang Univ.13

13

The recursion-tree method

• Consider solving the following recurrence.
T (n) = 3T (⌊n/4⌋) + Θ(n2).

• Show T (n) = Θ(n2).
– Show T(n) = Ω(n2).

• Obvious

– Show T(n) = O(n2).
• Guess by the recursion-tree method
• Prove by the substitution method

Hanyang Univ.
14

T (n) = 3T (⌊n/4⌋) + Θ(n2).

cn2T(n)
cn2

T (n) = 3T (n/4) + cn2

 n = 4k

The recursion-tree method

Hanyang Univ.

15

cn2

c(n/4)2 c(n/4)2 c(n/4)2

T(1) T(1) T(1) T(1) T(1) T(1) T(1) T(1) T(1) T(1) T(1) T(1)…

cn2

Total : O(n2)

log4n +1

The recursion-tree method

Hanyang Univ.16

• Cost computation

– Subproblem size for a node at depth i: n/4i

– The number of nodes at depth i : 3i

– The number of levels: log4 n +1.
• Because the subproblem size hits n = 1 when n/4i = 1 or,

equivalently, when i = log4 n.

16

The recursion-tree method

Hanyang Univ.17

17

The recursion-tree method

• Cost of each depth

– The total cost of all nodes at depth i
• Except the last level: 3i c(n/4i)2= (3/16)i cn2

• The last level :

Hanyang Univ.18

18

The recursion-tree method

• Cost of all depths

Hanyang Univ.19

19

The recursion-tree method

• We have derived a guess of T (n) = O(n2)
for the recurrence T (n) = 3T (⌊n/4⌋) + Θ(n2).

• We prove T (n) = O(n2) by the substitution method.

Hanyang Univ.20

20

The recursion-tree method

• Show that T (n) ≤ dn2 (for some d > 0 and for the same c > 0)
T(n) = 3T(⌊n/4⌋) + cn2

 ≤ 3d⌊n/4⌋2 + cn2

 ≤ 3d(n/4)2 + cn2

 = 3/16 dn2 + cn2

 ≤ dn2

 where the last step holds as long as d ≥ (16/13)c.

• Since T(n) = Ω (n2) and T(n) = O(n2), T(n) = Θ(n2).

Hanyang Univ.21

21

The recursion-tree method

• Another example
– Given T (n) = T(n/3) + T(2n/3) + O(n),
 to show T(n) = O(nlgn).

Hanyang Univ.22

22

The recursion-tree method

• T (n) = T(n/3) + T(2n/3) + O(n).

cn

c(n/3)

cn

Total : O(nlgn)

log3/2n

c(2n/3) cn

cn

Hanyang Univ.23

23

The recursion-tree method

• the cost of each level : cn

• height
– n → (2/3)n → (2/3)2n → ··· → 1
=> (2/3)kn = 1 when k = log3/2 n,
=> log3/2n.

• Total : each level cost x height
– => O(cnlog3/2n) = O(n lg n)

Hanyang Univ.24

24

The recursion-tree method

• Prove the upper bound O(nlgn)

• Show that T(n) ≤ dnlgn for some constant d.
T(n) ≤ T(n/3) + T(2n/3) + cn
≤ d(n/3)lg(n/3) + d(2n/3)lg(2n/3) + cn
= (d(n/3)lgn - d(n/3)lg3) + (d(2n/3)lgn + d(2n/3)lg(2/3)) + cn
= dnlgn + d(-(n/3)lg3 + (2n/3)lg(2/3)) + cn
= dnlgn + d(-(n/3)lg3 + (2n/3)lg2 - (2n/3)lg3) + cn
= dnlgn + dn(-lg3 + 2/3) + cn
≤ dnlgn, as long as d ≥ c/(lg 3 - (2/3))

Hanyang Univ.25

25

Self-study

• Use only recursion tree method.

– Exercise 4.4-1 (4.2-1 in the 2nd ed.)

– Exercise 4.4-6 (4.2-2 in the 2nd ed.)

