Getting Started

Contents

Sorting problem

2 sorting algorithms
e Insertion sort
e Merge sort

Sorting problem

keys

Illpllt /

e A sequence of n number <ay, a,, . . ., a,>.

Output

e A permutation (reordering) <a'y, a'y, . . ., a’,> of the input
sequence such that a’\<a’,< ... <d’

Ex>
e Input: <5,2,4,6,1, 3>
e Output: <1, 2,3,4,5, 6>

Insertion sort

Insertion sort
Description
Correctness
Performance

Description

What 1s insertion sort?
e A sorting algorithm using insertion.

What 1s insertion?

e Given a key and a sorted list of keys, insert the key
into the sorted list preserving the sorted order.

e cx> Insert 3 into <1, 2, 4, 5, 6>

Description

Insertion sort uses insertion incrementally.
e Let A[1..n] denote the array storing keys.

e Insert A[2] into A[1].
e Insert A[3] into A[1..2].
e Insert A[4] into A[1..3].

e Insert A[n] into A[1..n-1].

Description: example

o e de el

97 4708 .53

e e SEird e

Zi4io20v 05

2.4 15 16 0e15

520456 .3

a2 54 576

Description: pseudo code

INSERTION-SORT(4)

Pseudocode conventions are given in

1 forj =2 to A.length p. 19 - 20 of the textbook.
% key = A[J]
3 // Insert A[j] into the sorted
sequence A[1..j - 1].
4 i=j-1
5 while i > 0 and A[i] > key
6 Ali + 1] = A[i]
7 i=1-1
8 Ali + 1] = key
n-1 iterations of insertion. Insert A[j] into A[1..j - 1].

Find a place to put 4[/]. Put A[/]. 8

Insertion sort

Insertion sort

Performance
Running time
Space consumption

Running time

How to analyze the running time of an algorithm?

e Consider running the algorithm on a specific machine
and measure the running time.

We cannot compare the running time of an algorithm on a
machine with the running time of another algorithm on
another machine.

S0, we have to measure the running time of every algorithm
on a specific machine, which 1s impossible.

e Hence, we count the number of instructions used by
the algorithm.

10

Instructions

Arithmetic

e Add, Subtract, Multiply, Divide, remainder, floor,
celling

Data movement

e Load, store, copy

Control

e Conditional branch
e Unconditional branch
e Subroutine call and return

11

Running time

The running time of an algorithm grows with the
input size, which is the number of items in the input.

For example, sorting 10 keys 1s faster than sorting
100 keys.

So the running time of an algorithm 1s described as a
function of input size n, for example, 7(n).

12

Running time of insertion sort

INSERTION-SORT(A)

1

2
3

G5t I NENERCA o

for j = 2 to A.length

key = A[/]
// Insert A[j] into the sorted

i

sequence A[1..j - 1].

while i > 0 and A[i] > key

Ali + 1] = A[{]

CcoSt

times

T(n): The sum of product of cost and times of each line.

13

ime of insertion sort

times

M = X X
SSRE 1 1
—_

e
1l
N

;=1

~r
1l
N

T

N
1l
N

;-1

n-1

- T(n): The sum of product of cost and times of each line.

Running time of insertion sort

t;: The number of times the while loop test 1s
executed for .

Note that for, while loop test 1s executed one
time more than the loop body.

15

Running time of insertion sort

I'(n)= cln+62(n—1)+c4(n—1)+C5ﬁtj+c6i(tj—l)

G Z=2: (ti=1)+cy(n—1)

Although the size of the mput 1s the same, we have
e best case
e average case, and

® WwWorst case.

16

Running time of insertion sort

Best case
o If A[1..n] 1s already sorted, 7, = 1 forj =2, 3,..., n.

T(n)=cln+cz(n—1)+c4(n—1)+csitj+c>é—l)

+ c%—l) +c,(n—1)

=cn+c,(n=)+c,(n=1)+c;(n—=1)+cy(n—1)
=(e Fo b tete i —(c tc e kel

This running time can be expressed as an+b for constants a

and b; 1t 1s thus a linear function of n. :

Running time of insertion sort

Worst case

o If A[1..n] 1s sorted in reverse order, 7,= j for j =2, 3,..., n.

Z”:j:n(n—l-l)_1 Mg i(j_l):n(n—l)

2 2
T(n):cln+cz(n—1)+c4(n—1)+cs(n(nJrl)—1)
+c6(”(”T_1))+c7(”(”_1))+c8(n—1)
:(25 +C; +27)n2+(cl+cz+c4+25 —26 —;7 e (e e e)

This running time can be expressed as an’ + bn + ¢ for

constants a, b, and c; it 1s thus a quadratic function of n. ke

Running time of insertion sort

Only the degree of leading term is important.

e Because we are only interested in the rate of
growth or order of growth.

e For example, a quadratic function grows faster than
any linear function.

The degree of leading term is expressed as ®—notation.
e The worst-case running time of insertion sort is ®(#?).

19

Space consumption of insertion sort

®(n) space.

Moreover, the input numbers are sorted in place.

e n + c space for some constant c.

20

Self-study on Insertion Sort

Exercise 2.1-1

Exercise 2.1-2

21

Content

Sorting algorithms
e O(n?).
e Merge sort - O(nlgn).

22

Merge

What 1s merge sort?
e A sorting algorithm using merge.

What is merge?

e Given two sorted lists of keys, generate a sorted list
of the keys 1n the given sorted lists.

@ 1 0 Oz ol d i e s Rl GOS0 by O

23

Merge

Merging example

10 -0 0 0.9 9 -0
N i AN A 7 bl A

D>, 6, 8>
B 6, 3>
B 6, 3>
3.:6/3>
0.3
8>

8>

>

@4, 7, 9>
@4, 7,)9>
< @7,9>
= 7, 9>
< 7, 9>
= 7, 9>
< 0>
< 0>

1 3l Al e B g 2

AN A i e i A Ay i

P
152

Lo 4

94 sh
1,2,4,5,6>
N AL
[T NS g

I 2. 45 67 8 9>

24

Merge

MERGE(4, p, g, 1)

—_—
— S 0 0 9 bW~

—_— e e e e
< O DN B~ W DN

n=q-p+l1

n,=r—dgq

let L[1 .. n; + 1] and R[1 .. n, + 1] be new arrays
fori=1 ton

L[i] =A[p+i-1]
forj =1 ton,

R[j] =4 lq +/]
Lln; + 1] =00
R[ny + 1] =00
i=1
j=1
fork=p tor

if L[i] < R[j]

Alk] = L[i]
i=i +1

else A[k] = R[]

j=j +1

25

Merge

Running time of merge
e Let n, and n, denote the lengths of two sorted lists.
e O(n, + n,) time.

Main operations: compare and move

#comparison < #movement

Obviously, #movement = n, + n,

So, #comparison < n; + n,

Hence, #comparison + #movement < 2(n; + n,)

which means O(n; + n,).

26

Merge sort

A divide-and-conquer approach

e Divide: Divide the n keys into two lists of n/2 keys.

e® Conquer: Sort the two lists recursively using merge sort.
e Combine: Merge the two sorted lists.

27

Merge sort

524 7 1 3 26

7 divide \

5 2 4 7

Awlde \

/\ /\ /\ /\

3 2 6

/ d1V1d\

1

3

6

28

Merge sort

T = 1 2 2 3 4 5 6 7

P M
merge 2 4 5 7 1 2 3 6
merge 5 7 2 6

i /\ /\ /\

6

29

Pseudo code

MERGE-SORT(4, p, r)

1 ifp<r

2 qg=|(pt+r)/2]

3 MERGE-SORT(4, p, q)

4 MERGE-SORT(4,q + 1, r)
S MERGE(, p, g, r)

30

Running time

Divide: O(1)
e The divide step just computes the middle of the subarray,
which takes constant time.

Conquer: 27 (n/2)
e We recursively solve two subproblems, each of size ~n/2.
Combine: O(n)

e We already showed that merging two sorted lists of size
n/2 takes ®(n) time.

31

Running time

1(n) can be represented as a recurrence.

O(1) if n=1,

T(n)=+ |
2T(n/2)+0O(n) ifn>1

32

Running time

where the constant ¢ represents the time required
to solve problems of size 1 as well as the time per
array element of the divide and combine steps.

e @(1) if n=1,
e 2T(n/2)+O(n) if n >1
\

C if n=1,
I'(n)=
2T (n/2)+cn if n>1

33

Recursion tree

o A%

I(n2) T1(n?2)

cn
/ \
cn/2 cn/2

Sk e

I(n/4) T(n4) 1(nA4) T(n/4)

34

Recursion tree

cn
/ \
cn/2 cn/2

Sl ot

cn/4 cn/4 cn/4 cn/4

Foulag #

CCCCC...C C‘

35

Recursion tree

cn
/ \
cn/2 CHD s S e

Sl ot

cn/4d cn/4 cn/4 cn/4 """ "P CH
LTI)

C® 0= CktC. YU CT R G C = = ap CH

36

Recursion tree

cn
/ \
cn/2 CHID i e

/\ /\ > lgn + 1

cn/4d cn/4 cn/4 cn/4 """ "P CH
LTI)

Ci 6 CnlC. S B G C --->cn/

Total : cnlgn+cn = © (nlgn)

37

Merge sort
e Exercise 2.3-1

e Exercise 2.3-2

Horner’s rule
e Problem 2-3 (a) (b)

Self-study

38

More (sorting) algorithms

Binary Search
e Exercise 2.3-5

Selection sort
e Exercise 2.2-2

39

