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• Sorting problem

• 2 sorting algorithms
⬤ Insertion sort
⬤ Merge sort



3

Sorting problem

• Input
⬤ A sequence of n number <a1, a2, . . ., an>.

• Output
⬤ A permutation (reordering) <a’1, a’2, . . ., a’n> of the input 

sequence such that a’1≤ a’2≤ … ≤ a’n.
• Ex> 

⬤ Input:    < 5, 2, 4, 6, 1, 3>
⬤ Output: < 1, 2, 3, 4, 5, 6>

keys
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Insertion sort

• Insertion sort
• Description
• Correctness
• Performance
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Description

• What is insertion sort?
⬤ A sorting algorithm using insertion. 

• What is insertion? 
⬤ Given a key and a sorted list of keys, insert the key 

into the sorted list preserving the sorted order.
⬤ ex> Insert 3 into <1, 2, 4, 5, 6> 
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Description

• Insertion sort uses insertion incrementally.
⬤ Let A[1..n] denote the array storing keys. 
⬤ Insert A[2] into A[1].
⬤ Insert A[3] into A[1..2].
⬤ Insert A[4] into A[1..3].

. 

. 

.
⬤ Insert A[n] into A[1..n-1].
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Description: example

• 5  2  4  6  1  3

• 5 2  4  6  1  3 

• 2  5 4  6  1  3

• 2  4  5 6  1  3

• 2  4  5 6 1  3

• 1 2  4  5 6 3

• 1 2  3  4  5 6



INSERTION-SORT(A)
1 for j = 2 to A.length
2 key = A[j]
3 // Insert A[j] into the sorted

sequence A[1..j - 1]. 
4 i = j - 1
5 while i > 0 and A[i] > key
6 A[i + 1] = A[i]
7 i = i - 1
8 A[i + 1] = key
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Description: pseudo code

Insert A[j] into A[1..j - 1].n-1 iterations of insertion.

Find a place to put A[j]. Put A[j]. 

Pseudocode conventions are given in 
p. 19 - 20 of the textbook.
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Insertion sort

• Insertion sort
• Description
• Correctness
• Performance

§ Running time
§ Space consumption
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Running time

• How to analyze the running time of an algorithm?
⬤ Consider running the algorithm on a specific machine 

and measure the running time.
§ We cannot compare the running time of an algorithm on a 

machine with the running time of another algorithm on 
another machine.

§ So, we have to measure the running time of every algorithm 
on a specific machine, which is impossible.

⬤ Hence, we count the number of instructions used by 
the algorithm.
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Instructions

• Arithmetic
⬤ Add, Subtract, Multiply, Divide, remainder, floor, 

ceiling
• Data movement

⬤ Load, store, copy
• Control

⬤ Conditional branch
⬤ Unconditional branch
⬤ Subroutine call and return
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Running time

• The running time of an algorithm grows with the 
input size, which is the number of items in the input.

• For example, sorting 10 keys is faster than sorting 
100 keys.

• So the running time of an algorithm is described as a 
function of input size n, for example, T(n).



13

Running time of insertion sort

INSERTION-SORT(A) cost times
1 for j = 2 to A.length c1 n
2 key = A[j] c2 n - 1
3 // Insert A[j] into the sorted

sequence A[1..j - 1].                     0          n - 1  
4 i = j - 1 c4 n - 1
5 while i > 0 and A[i] > key c5
6 A[i + 1] = A[i] c6
7 i = i - 1 c7
8 A[i + 1] = key c8 n - 1

• T(n): The sum of product of cost and times of each line.
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Running time of insertion sort

INSERTION-SORT(A) cost times
for j ← 2 to length[A] c1 n

do key ← A[j] c2 n - 1
i ← j - 1 c4 n - 1
while i > 0 and A[i] > key c5

do A[i + 1] ← A[i] c6

i ← i - 1 c7

A[i + 1] ← key c8 n - 1

• T(n): The sum of product of cost and times of each line.
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Running time of insertion sort

• tj: The number of times the while loop test is  
executed for j.

• Note that for, while loop test is executed one 
time more than the loop body.
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Running time of insertion sort

• Although the size of the input is the same, we have
⬤ best case
⬤ average case, and
⬤ worst case.
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Running time of insertion sort

• Best case
⬤ If A[1..n] is already sorted, tj = 1 for j = 2, 3,…, n.

• This running time can be expressed as an+b for constants a
and b; it is thus a linear function of n.
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• Worst case
⬤ If A[1..n] is sorted in reverse order, tj= j for j = 2, 3,…, n.

• This running time can be expressed as an2 + bn + c for 
constants a, b, and c; it is thus a quadratic function of n.

and 

Running time of insertion sort
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Running time of insertion sort

• Only the degree of leading term is important.
⬤ Because we are only interested in the rate of 

growth or order of growth.
⬤ For example, a quadratic function grows faster than 

any linear function.

• The degree of leading term is expressed as Θ–notation.
⬤ The worst-case running time of insertion sort is Θ(n2).
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Space consumption of insertion sort

• Θ(n) space.

• Moreover, the input numbers are sorted in place.
⬤ n + c space for some constant c.
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Self-study on Insertion Sort

• Exercise 2.1-1

• Exercise 2.1-2
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Content

• Sorting problem

• Sorting algorithms
⬤ Insertion sort - Θ(n2).
⬤ Merge sort - Θ(nlgn).
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Merge

• What is merge sort?
⬤ A sorting algorithm using merge.

• What is merge?
⬤ Given two sorted lists of keys, generate a sorted list 

of the keys in the given sorted lists.
⬤ <1, 5, 6, 8>  < 2, 4, 7, 9>  → < 1, 2, 4, 5, 6, 7, 8, 9>
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Merge

• Merging example
⬤ <1, 5, 6, 8>  < 2, 4, 7, 9>  →
⬤ <    5, 6, 8>  < 2, 4, 7, 9>  →
⬤ <    5, 6, 8>  <    4, 7, 9>  →
⬤ <    5, 6, 8>  <         7, 9>  →
⬤ <        6, 8>  <         7, 9>  →
⬤ <           8>  <         7, 9>  →
⬤ <           8>  <            9>  →
⬤ <              >  <             9>  →

< 1 >
< 1, 2 >
< 1, 2, 4 >
< 1, 2, 4, 5 >
< 1, 2, 4, 5, 6 >
< 1, 2, 4, 5, 6, 7 >
< 1, 2, 4, 5, 6, 7, 8 >
< 1, 2, 4, 5, 6, 7, 8, 9>
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Merge

MERGE(A, p, q, r)
1 n1 = q – p + 1
2 n2 = r – q
3 let L[1 .. n1 + 1] and R[1 .. n2 + 1] be new arrays 
4 for i = 1  to n1
5 L[i]  = A [p + i - 1] 
6 for j = 1  to n2
7 R[j]  = A [q + j] 
8 L[n1 + 1] = ∞
9 R[n2 + 1] = ∞
10 i = 1
11 j = 1
12 for k = p to r
13 if L[i] ≤ R[j] 
14 A[k] = L[i] 
15 i = i  + 1
16 else A[k] = R[j] 
17 j = j  + 1



26

Merge

• Running time of merge
⬤ Let n1 and n2 denote the lengths of two sorted lists.
⬤ Θ(n1 + n2) time.

§ Main operations: compare and move
§ #comparison ≤ #movement
§ Obviously, #movement = n1 + n2

§ So, #comparison ≤  n1 + n2

§ Hence, #comparison + #movement ≤  2(n1 + n2)
§ which means Θ(n1 + n2).
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Merge sort

• A divide-and-conquer approach 
⬤ Divide: Divide the n keys into two lists of n/2 keys.

⬤ Conquer: Sort the two lists recursively using merge sort.

⬤ Combine: Merge the two sorted lists.
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5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6

divide

divide divide

Merge sort
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1 2 2 3 4 5 6 7

2 4 5 7 1 2 3 6

2 5 4 7 1 3 2 6

5 2 4 7 1 3 2 6

merge

merge

merge

Merge sort
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Pseudo code

MERGE-SORT(A, p, r)
1 if p < r
2 q = ⌊(p + r)/2⌋
3 MERGE-SORT(A, p, q)
4 MERGE-SORT(A, q + 1, r)
5 MERGE(A, p, q, r)
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Running time

• Divide: Θ(1)
⬤ The divide step just computes the middle of the subarray, 

which takes constant time. 

• Conquer: 2T (n/2) 
⬤ We recursively solve two subproblems, each of size ~n/2.

• Combine: Θ(n) 
⬤ We already showed that merging two sorted lists of size 

n/2 takes Θ(n) time.
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Running time

if n=1,

if n >1

• T(n) can be represented as a recurrence.
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Running time

• where the constant c represents the time required 
to solve problems of size 1 as well as the time per 
array element of the divide and combine steps.

if n=1,

if n >1

if n=1,

if n >1
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Recursion tree

T(n)
cn

T(n/2) T(n/2)

T(n/4)

cn

cn/2 cn/2

T(n/4) T(n/4)T(n/4)
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Recursion tree

cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

c c c c c c c…
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Recursion tree

cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

c c c c c c c…

cn

cn

cn

cn
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Recursion tree

cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

c c c c c c c…

cn

cn

cn

cn

Total : cnlgn+cn = Θ (nlgn)

lgn + 1
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Self-study

• Merge sort
⬤ Exercise 2.3-1
⬤ Exercise 2.3-2

• Horner’s rule
⬤ Problem 2-3 (a) (b)
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• Binary Search
⬤ Exercise 2.3-5

• Selection sort
⬤ Exercise 2.2-2

More (sorting) algorithms


