
Getting Started

2

Contents

• Sorting problem

• 2 sorting algorithms
⬤ Insertion sort
⬤ Merge sort

3

Sorting problem

• Input
⬤ A sequence of n number <a1, a2, . . ., an>.

• Output
⬤ A permutation (reordering) <a’1, a’2, . . ., a’n> of the input

sequence such that a’1≤ a’2≤ … ≤ a’n.
• Ex>

⬤ Input: < 5, 2, 4, 6, 1, 3>
⬤ Output: < 1, 2, 3, 4, 5, 6>

keys

4

Insertion sort

• Insertion sort
• Description
• Correctness
• Performance

5

Description

• What is insertion sort?
⬤ A sorting algorithm using insertion.

• What is insertion?
⬤ Given a key and a sorted list of keys, insert the key

into the sorted list preserving the sorted order.
⬤ ex> Insert 3 into <1, 2, 4, 5, 6>

6

Description

• Insertion sort uses insertion incrementally.
⬤ Let A[1..n] denote the array storing keys.
⬤ Insert A[2] into A[1].
⬤ Insert A[3] into A[1..2].
⬤ Insert A[4] into A[1..3].

.

.

.
⬤ Insert A[n] into A[1..n-1].

7

Description: example

• 5 2 4 6 1 3

• 5 2 4 6 1 3

• 2 5 4 6 1 3

• 2 4 5 6 1 3

• 2 4 5 6 1 3

• 1 2 4 5 6 3

• 1 2 3 4 5 6

INSERTION-SORT(A)
1 for j = 2 to A.length
2 key = A[j]
3 // Insert A[j] into the sorted

sequence A[1..j - 1].
4 i = j - 1
5 while i > 0 and A[i] > key
6 A[i + 1] = A[i]
7 i = i - 1
8 A[i + 1] = key

8

Description: pseudo code

Insert A[j] into A[1..j - 1].n-1 iterations of insertion.

Find a place to put A[j]. Put A[j].

Pseudocode conventions are given in
p. 19 - 20 of the textbook.

9

Insertion sort

• Insertion sort
• Description
• Correctness
• Performance

§ Running time
§ Space consumption

10

Running time

• How to analyze the running time of an algorithm?
⬤ Consider running the algorithm on a specific machine

and measure the running time.
§ We cannot compare the running time of an algorithm on a

machine with the running time of another algorithm on
another machine.

§ So, we have to measure the running time of every algorithm
on a specific machine, which is impossible.

⬤ Hence, we count the number of instructions used by
the algorithm.

11

Instructions

• Arithmetic
⬤ Add, Subtract, Multiply, Divide, remainder, floor,

ceiling
• Data movement

⬤ Load, store, copy
• Control

⬤ Conditional branch
⬤ Unconditional branch
⬤ Subroutine call and return

12

Running time

• The running time of an algorithm grows with the
input size, which is the number of items in the input.

• For example, sorting 10 keys is faster than sorting
100 keys.

• So the running time of an algorithm is described as a
function of input size n, for example, T(n).

13

Running time of insertion sort

INSERTION-SORT(A) cost times
1 for j = 2 to A.length c1 n
2 key = A[j] c2 n - 1
3 // Insert A[j] into the sorted

sequence A[1..j - 1]. 0 n - 1
4 i = j - 1 c4 n - 1
5 while i > 0 and A[i] > key c5
6 A[i + 1] = A[i] c6
7 i = i - 1 c7
8 A[i + 1] = key c8 n - 1

• T(n): The sum of product of cost and times of each line.

!
!"#

$

𝑡!

!
!"#

$

(𝑡!−1)

!
!"#

$

(𝑡!−1)

14

Running time of insertion sort

INSERTION-SORT(A) cost times
for j ← 2 to length[A] c1 n

do key ← A[j] c2 n - 1
i ← j - 1 c4 n - 1
while i > 0 and A[i] > key c5

do A[i + 1] ← A[i] c6

i ← i - 1 c7

A[i + 1] ← key c8 n - 1

• T(n): The sum of product of cost and times of each line.

!
!"#

$

𝑡!

!
!"#

$

(𝑡!−1)

!
!"#

$

(𝑡!−1)

15

Running time of insertion sort

• tj: The number of times the while loop test is
executed for j.

• Note that for, while loop test is executed one
time more than the loop body.

16

Running time of insertion sort

• Although the size of the input is the same, we have
⬤ best case
⬤ average case, and
⬤ worst case.

17

Running time of insertion sort

• Best case
⬤ If A[1..n] is already sorted, tj = 1 for j = 2, 3,…, n.

• This running time can be expressed as an+b for constants a
and b; it is thus a linear function of n.

18

• Worst case
⬤ If A[1..n] is sorted in reverse order, tj= j for j = 2, 3,…, n.

• This running time can be expressed as an2 + bn + c for
constants a, b, and c; it is thus a quadratic function of n.

and

Running time of insertion sort

19

Running time of insertion sort

• Only the degree of leading term is important.
⬤ Because we are only interested in the rate of

growth or order of growth.
⬤ For example, a quadratic function grows faster than

any linear function.

• The degree of leading term is expressed as Θ–notation.
⬤ The worst-case running time of insertion sort is Θ(n2).

20

Space consumption of insertion sort

• Θ(n) space.

• Moreover, the input numbers are sorted in place.
⬤ n + c space for some constant c.

21

Self-study on Insertion Sort

• Exercise 2.1-1

• Exercise 2.1-2

22

Content

• Sorting problem

• Sorting algorithms
⬤ Insertion sort - Θ(n2).
⬤ Merge sort - Θ(nlgn).

23

Merge

• What is merge sort?
⬤ A sorting algorithm using merge.

• What is merge?
⬤ Given two sorted lists of keys, generate a sorted list

of the keys in the given sorted lists.
⬤ <1, 5, 6, 8> < 2, 4, 7, 9> → < 1, 2, 4, 5, 6, 7, 8, 9>

24

Merge

• Merging example
⬤ <1, 5, 6, 8> < 2, 4, 7, 9> →
⬤ < 5, 6, 8> < 2, 4, 7, 9> →
⬤ < 5, 6, 8> < 4, 7, 9> →
⬤ < 5, 6, 8> < 7, 9> →
⬤ < 6, 8> < 7, 9> →
⬤ < 8> < 7, 9> →
⬤ < 8> < 9> →
⬤ < > < 9> →

< 1 >
< 1, 2 >
< 1, 2, 4 >
< 1, 2, 4, 5 >
< 1, 2, 4, 5, 6 >
< 1, 2, 4, 5, 6, 7 >
< 1, 2, 4, 5, 6, 7, 8 >
< 1, 2, 4, 5, 6, 7, 8, 9>

25

Merge

MERGE(A, p, q, r)
1 n1 = q – p + 1
2 n2 = r – q
3 let L[1 .. n1 + 1] and R[1 .. n2 + 1] be new arrays
4 for i = 1 to n1
5 L[i] = A [p + i - 1]
6 for j = 1 to n2
7 R[j] = A [q + j]
8 L[n1 + 1] = ∞
9 R[n2 + 1] = ∞
10 i = 1
11 j = 1
12 for k = p to r
13 if L[i] ≤ R[j]
14 A[k] = L[i]
15 i = i + 1
16 else A[k] = R[j]
17 j = j + 1

26

Merge

• Running time of merge
⬤ Let n1 and n2 denote the lengths of two sorted lists.
⬤ Θ(n1 + n2) time.

§ Main operations: compare and move
§ #comparison ≤ #movement
§ Obviously, #movement = n1 + n2

§ So, #comparison ≤ n1 + n2

§ Hence, #comparison + #movement ≤ 2(n1 + n2)
§ which means Θ(n1 + n2).

27

Merge sort

• A divide-and-conquer approach
⬤ Divide: Divide the n keys into two lists of n/2 keys.

⬤ Conquer: Sort the two lists recursively using merge sort.

⬤ Combine: Merge the two sorted lists.

28

5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6

divide

divide divide

Merge sort

29

1 2 2 3 4 5 6 7

2 4 5 7 1 2 3 6

2 5 4 7 1 3 2 6

5 2 4 7 1 3 2 6

merge

merge

merge

Merge sort

30

Pseudo code

MERGE-SORT(A, p, r)
1 if p < r
2 q = ⌊(p + r)/2⌋
3 MERGE-SORT(A, p, q)
4 MERGE-SORT(A, q + 1, r)
5 MERGE(A, p, q, r)

31

Running time

• Divide: Θ(1)
⬤ The divide step just computes the middle of the subarray,

which takes constant time.

• Conquer: 2T (n/2)
⬤ We recursively solve two subproblems, each of size ~n/2.

• Combine: Θ(n)
⬤ We already showed that merging two sorted lists of size

n/2 takes Θ(n) time.

32

Running time

if n=1,

if n >1

• T(n) can be represented as a recurrence.

33

Running time

• where the constant c represents the time required
to solve problems of size 1 as well as the time per
array element of the divide and combine steps.

if n=1,

if n >1

if n=1,

if n >1

34

Recursion tree

T(n)
cn

T(n/2) T(n/2)

T(n/4)

cn

cn/2 cn/2

T(n/4) T(n/4)T(n/4)

35

Recursion tree

cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

c c c c c c c…

36

Recursion tree

cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

c c c c c c c…

cn

cn

cn

cn

37

Recursion tree

cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

c c c c c c c…

cn

cn

cn

cn

Total : cnlgn+cn = Θ (nlgn)

lgn + 1

38

Self-study

• Merge sort
⬤ Exercise 2.3-1
⬤ Exercise 2.3-2

• Horner’s rule
⬤ Problem 2-3 (a) (b)

39

• Binary Search
⬤ Exercise 2.3-5

• Selection sort
⬤ Exercise 2.2-2

More (sorting) algorithms

